EEE.8-3.6 Nanoelectronic Devices

Course contents: * Introduction to quantum mechanics. Photoelectric effect. Hydrogen spectrum. De Broglie equation. Discrete spectrums. Electrochemical potential in metals. * Energy levels in low dimensionality systems. Quantum wells. Molecular bonds. Tunneling. Energy levels in solids. * Bottom up approach study in nanoelectronic systems. Molecular electronics. I-V and G-V characteristics. * Carrier movement in nano MOS transistors. Ballistic conductivity. Carbon nanotude transistors. Nano-wires. * Memory devices with nanoparticles. Hot electrons and carrier transport models through thin insulators. * C-V characteristics in MOS and nano-memories. * Coulomb blockage. Quantum points. Bandgap widening. Optical properties. Single electron transistors. Coulomb diamonds. * Metallic nanoparticles. Single molecule sensors. Photovoltaic elements. * Electronic, optical properties and transport phenomena in nanodevices. * Characterization of nanodevices. * Introduction to quantum computing.